3.950 \(\int \frac{1}{(1+x^4)^{3/2}} \, dx\)

Optimal. Leaf size=58 \[ \frac{\left (x^2+1\right ) \sqrt{\frac{x^4+1}{\left (x^2+1\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}(x),\frac{1}{2}\right )}{4 \sqrt{x^4+1}}+\frac{x}{2 \sqrt{x^4+1}} \]

[Out]

x/(2*Sqrt[1 + x^4]) + ((1 + x^2)*Sqrt[(1 + x^4)/(1 + x^2)^2]*EllipticF[2*ArcTan[x], 1/2])/(4*Sqrt[1 + x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0065369, antiderivative size = 58, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 9, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {199, 220} \[ \frac{x}{2 \sqrt{x^4+1}}+\frac{\left (x^2+1\right ) \sqrt{\frac{x^4+1}{\left (x^2+1\right )^2}} F\left (2 \tan ^{-1}(x)|\frac{1}{2}\right )}{4 \sqrt{x^4+1}} \]

Antiderivative was successfully verified.

[In]

Int[(1 + x^4)^(-3/2),x]

[Out]

x/(2*Sqrt[1 + x^4]) + ((1 + x^2)*Sqrt[(1 + x^4)/(1 + x^2)^2]*EllipticF[2*ArcTan[x], 1/2])/(4*Sqrt[1 + x^4])

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{1}{\left (1+x^4\right )^{3/2}} \, dx &=\frac{x}{2 \sqrt{1+x^4}}+\frac{1}{2} \int \frac{1}{\sqrt{1+x^4}} \, dx\\ &=\frac{x}{2 \sqrt{1+x^4}}+\frac{\left (1+x^2\right ) \sqrt{\frac{1+x^4}{\left (1+x^2\right )^2}} F\left (2 \tan ^{-1}(x)|\frac{1}{2}\right )}{4 \sqrt{1+x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0061954, size = 30, normalized size = 0.52 \[ \frac{1}{2} x \left (\, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-x^4\right )+\frac{1}{\sqrt{x^4+1}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(1 + x^4)^(-3/2),x]

[Out]

(x*(1/Sqrt[1 + x^4] + Hypergeometric2F1[1/4, 1/2, 5/4, -x^4]))/2

________________________________________________________________________________________

Maple [C]  time = 0.068, size = 72, normalized size = 1.2 \begin{align*}{\frac{x}{2}{\frac{1}{\sqrt{{x}^{4}+1}}}}+{\frac{{\it EllipticF} \left ( x \left ({\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) ,i \right ) }{\sqrt{2}+i\sqrt{2}}\sqrt{1-i{x}^{2}}\sqrt{1+i{x}^{2}}{\frac{1}{\sqrt{{x}^{4}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^4+1)^(3/2),x)

[Out]

1/2*x/(x^4+1)^(1/2)+1/2/(1/2*2^(1/2)+1/2*I*2^(1/2))*(1-I*x^2)^(1/2)*(1+I*x^2)^(1/2)/(x^4+1)^(1/2)*EllipticF(x*
(1/2*2^(1/2)+1/2*I*2^(1/2)),I)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (x^{4} + 1\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^4+1)^(3/2),x, algorithm="maxima")

[Out]

integrate((x^4 + 1)^(-3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{x^{4} + 1}}{x^{8} + 2 \, x^{4} + 1}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^4+1)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^4 + 1)/(x^8 + 2*x^4 + 1), x)

________________________________________________________________________________________

Sympy [C]  time = 0.769202, size = 27, normalized size = 0.47 \begin{align*} \frac{x \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{3}{2} \\ \frac{5}{4} \end{matrix}\middle |{x^{4} e^{i \pi }} \right )}}{4 \Gamma \left (\frac{5}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x**4+1)**(3/2),x)

[Out]

x*gamma(1/4)*hyper((1/4, 3/2), (5/4,), x**4*exp_polar(I*pi))/(4*gamma(5/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (x^{4} + 1\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^4+1)^(3/2),x, algorithm="giac")

[Out]

integrate((x^4 + 1)^(-3/2), x)